1,645 research outputs found

    Statistical Study of the Primary Causes of Extractions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66522/2/10.1177_00220345440230060701.pd

    Can astrocytes be a target for precision medicine?

    Get PDF
    Astrocytes are the most abundant non-neural cell type residing within the central nervous system (CNS) displaying tremendous heterogeneity depending on their location. Once believed to be ‘passive support cells for electrically active neurons’, astrocytes are now recognised to play an active role in brain homeostasis by forming connections with the surrounding neurons, microglia and endothelial cells. Most importantly, they provide an optimum microenvironment for functional neurons through regulation of the blood brain barrier, energy supply and removal of debris and toxic waste. Their dysfunction has been identified as a potential contributing factor for several neurodegenerative disorders, from Alzheimer’s Disease to Amyotrophic Lateral Sclerosis. In this chapter, we will explore the implications of astrocyte dysfunction in neurodegenerative diseases and how these cells can be used as therapeutic targets in precision medicine

    Safety of localizing epilepsy monitoring intracranial electroencephalograph electrodes using MRI: radiofrequency-induced heating

    Get PDF
    Purpose: To investigate heating during postimplantation localization of intracranial electroencephalograph (EEG) electrodes by MRI. Materials and Methods: A phantom patient with a realistic arrangement of electrodes was used to simulate tissue heating during MRI. Measurements were performed using 1.5 Tesla (T) and 3T MRI scanners, using head- and body-transmit RF-coils. Two electrode-lead configurations were assessed: a standard condition with external electrode-leads physically separated and a fault condition with all lead terminations electrically shorted. Results: Using a head-transmit-receive coil and a 2.4 W/kg head-average specific absorption rate (SAR) sequence, at 1.5T the maximum temperature change remained within safe limits (<1°C). Under standard conditions, we observed greater heating (2.0°C) at 3T on one system and similar heating (<1°C) on a second, compared with the 1.5T system. In all cases these temperature maxima occurred at the grid electrode. In the fault condition, larger temperature increases were observed at both field strengths, particularly for the depth electrodes. Conversely, with a body-transmit coil at 3T significant heating (+6.4°C) was observed (same sequence, 1.2/0.5 W/kg head/body-average) at the grid electrode under standard conditions, substantially exceeding safe limits. These temperature increases neglect perfusion, a major source of heat dissipation in vivo. Conclusion: MRI for intracranial electrode localization can be performed safely at both 1.5T and 3T provided a head-transmit coil is used, electrode leads are separated, and scanner-reported SARs are limited as determined in advance for specific scanner models, RF coils and implant arrangements. Neglecting these restrictions may result in tissue injury

    Feasibility of simultaneous intracranial EEG-fMRI in humans: a safety study

    Get PDF
    In epilepsy patients who have electrodes implanted in their brains as part of their pre-surgical assessment, simultaneous intracranial EEG and fMRI (icEEG-fMRI) may provide important localising information and improve understanding of the underlying neuropathology. However, patient safety during icEEG-fMRI has not been addressed. Here the potential health hazards associated with icEEG-fMRI were evaluated theoretically and the main risks identified as: mechanical forces on electrodes from transient magnetic effects, tissue heating due to interaction with the pulsed RF fields and tissue stimulation due to interactions with the switched magnetic gradient fields. These potential hazards were examined experimentally in vitro on a Siemens 3 T Trio, 1.5 T Avanto and a GE 3 T Signa Excite scanner using a Brain Products MR compatible EEG system. No electrode flexion was observed. Temperature measurements demonstrated that heating well above guideline limits can occur. However heating could be kept within safe limits (< 1.0 °C) by using a head transmit RF coil, ensuring EEG cable placement to exit the RF coil along its central z-axis, using specific EEG cable lengths and limiting MRI sequence specific absorption rates (SARs). We found that the risk of tissue damage due to RF-induced heating is low provided implant and scanner specific SAR limits are observed with a safety margin used to account for uncertainties (e.g. in scanner-reported SAR). The observed scanner gradient switching induced current (0.08 mA) and charge density (0.2 μC/cm2) were well within safety limits (0.5 mA and 30 μC/cm2, respectively). Site-specific testing and a conservative approach to safety are required to avoid the risk of adverse events

    Subsidence of the West Siberian Basin: Effects of a mantle plume impact

    Get PDF
    Comparison of modeling results with observed subsidence patterns from the West Siberian Basin provides new insight into the origin of the Siberian Traps, and constrains the temperature, size, and depth of an impacting mantle plume head during and after the eruption of the Siberian Traps at the Permian-Triassic boundary (250 Ma). We compare subsidence patterns from one-dimensional conductive heat flow models to observed subsidence from backstripping studies of wells in the basin. This results in a best-fit scenario with a 50-km-thick initial plume head with a temperature of 1500 °C situated 50 km below the surface, and an initial regional crustal thickness of 34 km, in agreement with published values. Backstripping and modeling results agree very well, including a 60–90 m.y. delay between the rifting phase and the first regional sedimentation. Regional subsidence patterns indicate that the plume head was present across a minimum area of ∼2.5 × 106 km2. These results re-emphasize the viability of a mantle plume origin for the Siberian Traps, provide important constraints on the dynamics of mantle plume heads, and suggest a thermal control for the subsidence of the West Siberian Basin

    Functional MRI with active, fully implanted, deep brain stimulation systems: Safety and experimental confounds

    Get PDF
    We investigated safety issues and potential experimental confounds when performing functional magnetic resonance imaging (fMRI) investigations in human subjects with fully implanted, active, deep brain stimulation (DBS) systems. Measurements of temperature and induced voltage were performed in an in vitro arrangement simulating bilateral DBS during magnetic resonance imaging (MRI) using head transmit coils in both 1.5 and 3.0 T MRI systems. For MRI sequences typical of an fMRI study with coil-averaged specific absorption rates (SARs) less than 0.4 W/kg, no MRI-induced temperature change greater than the measurement sensitivity (0.1 °C) was detected at 1.5 T, and at 3 T temperature elevations were less than 0.5 °C, i.e. within safe limits. For the purposes of demonstration, MRI pulse sequences with SARs of 1.45 W/kg and 2.34 W/kg (at 1.5 T and 3 T, respectively) were prescribed and elicited temperature increases (> 1 °C) greater than those considered safe for human subjects. Temperature increases were independent of the presence or absence of active stimulator pulsing. At both field strengths during echo planar MRI, the perturbations of DBS equipment performance were sufficiently slight, and temperature increases sufficiently low to suggest that thermal or electromagnetically mediated experimental confounds to fMRI with DBS are unlikely. We conclude that fMRI studies performed in subjects with subcutaneously implanted DBS units can be both safe and free from DBS-specific experimental confounds. Furthermore, fMRI in subjects with fully implanted rather than externalised DBS stimulator units may offer a significant safety advantage. Further studies are required to determine the safety of MRI with DBS for other MRI systems, transmit coil configurations and DBS arrangements

    Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions

    Get PDF
    Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the greatest velocities tested. In these experiments back-flow ripples formed at much lower mean back-flow velocities than predicted from previously published descriptions. This lower threshold mean back-flow velocity is attributed to the pattern of velocity variation within the lee-side eddy of the host bedform. The back-flow velocity variations are attributed to vortex shedding from the separation zone, wake flapping and increases in the size of, and turbulent intensity within, the flow separation eddy controlled by the passage of superimposed bedforms approaching the crest of the bar. Short duration high velocity packets, whatever their cause, may form back-flow ripples if they exceed the minimum bed shear stress for ripple generation for long enough or, if much faster, may wash them out. Variation in back-flow ripple cross-lamination has been observed in the rock record and, by comparison with flume observations, the preserved back-flow ripple morphology may be useful for interpreting formative flow and sediment transport dynamics

    Managing whale-watching as a non-lethal consumptive activity

    Get PDF
    Marine tourism is a new frontier of late-capitalist transformation, generating more global revenue than aquaculture and fisheries combined. This transformation created whale-watching, a commercial tourism form that, despite recent critiques, has been accepted as non-consumptive activity. This paper uses four academic discourses to critique whale-watching as a form of capitalist exploitation: (1) commercial whale-watching and global capitalist transformation, (2) global capitalist politics and the promoted belief that whale-watching is non-consumptive, (3) the inherent contradictions of non-consumptive capitalist exploitation, and (4) whale-watching as a common-pool resource. These discourses lead us to critique whale-watching practices in relation to the common capitalist sequence of resource diversification, exploitation, depletion and collapse. Using specific impact studies, we conclude that a sustainability paradigm shift is required, whereby whale-watching (and other forms of wildlife tourism) is recognized as a form of non-lethal consumptive exploitation, understood in terms of sub-lethal anthropogenic stress and energetic impacts. We argue the need for a paradigm shift in the regulation and management of commercial whale-watching, and present the case for a unified, international framework for managing the negative externalities of whale-watching. The relevance of the issues raised about neoliberal policy-making extends beyond whale-watching to all forms of wildlife and nature-based tourism

    Dose assessment of melatonin in sepsis (DAMSEL2) study : Pharmacokinetics of two doses of oral melatonin in patients with sepsis

    Get PDF
    Open Access via the Wiley OA Agreement Funding The work was funded by the Scottish Government under the Experimental and Translational Medicine funding scheme of the Chief Scientist Office of Scotland, UK, reference number ETM/538Peer reviewedPublisher PD

    Surface tension of the isotropic-nematic interface

    Full text link
    We present the first calculations of the pressure tensor profile in the vicinity of the planar interface between isotropic liquid and nematic liquid crystal, using Onsager's density functional theory and computer simulation. When the liquid crystal director is aligned parallel to the interface, the situation of lowest free energy, there is a large tension on the nematic side of the interface and a small compressive region on the isotropic side. By contrast, for perpendicular alignment, the tension is on the isotropic side. There is excellent agreement between theory and simulation both in the forms of the pressure tensor profiles, and the values of the surface tension.Comment: Minor changes; to appear in Phys. Rev.
    corecore